博客
关于我
Zookeeper工作原理及各角色的任务分配
阅读量:141 次
发布时间:2019-02-27

本文共 886 字,大约阅读时间需要 2 分钟。

一、Zookeeper的工作原理

Zookeeper 是一个开源的分布式协调服务框架,主要用于管理大规模集群中的状态和配置信息。其工作原理基于Paxos协议,确保在分布式环境下实现高可靠性和一致性。

  • 数据存储:每个节点服务器在其内存中保留数据副本,确保集群中任意节点都能快速访问最新数据。

  • Leader选举:在集群启动时,通过Paxos协议从所有实例中选举出一个稳定的Leader,负责处理集群的数据更新和操作请求。

  • 事务处理:Leader节点负责调度和处理所有事务请求,确保集群内部的事务处理具有顺序性和一致性。

  • 多数可用:Zookeeper的更新操作只有当大多数节点成功修改数据时才认为操作完成,确保数据一致性。


  • 二、Zookeeper的角色分配与任务描述

    在Zookeeper集群中,各个节点根据其角色分配不同的任务,共同确保集群的高效运转。

    1. Leader角色

    • 事务请求调度:作为集群的事务处理核心,Leader负责唯一地调度和处理客户端的事务请求,确保集群内部事务的顺序性。
    • 服务调度:Leader还负责调度集群内部各服务的运行,协调集群层面的资源分配。

    2. Follower角色

    • 非事务请求处理:Follower节点负责处理客户端发来的非事务请求,并将事务请求转发给Leader节点。
    • 投票参与:Follower节点参与事务请求的Proposal缓存队列投票机制,确保集群内的数据一致性。
    • Leader选举参与:Follower节点也参与Leader选举投票,协助选举出稳定的集群领导者。

    3. Observer角色

    • 非事务处理能力提升:在Zookeeper 3.0版本之后,Observer角色被引入,通过不影响集群事务处理能力的方式提升集群的非事务处理能力。
    • 请求转发:Observer节点同样负责处理客户端的非事务请求,并将事务请求转发给Leader节点。
    • 无投票参与:Observer节点不参与任何形式的投票,避免对集群的稳定性产生影响。

    通过上述角色分配,Zookeeper实现了在分布式环境下的高效协调和数据管理,确保集群的高可用性和一致性。

    转载地址:http://fggf.baihongyu.com/

    你可能感兴趣的文章
    NIO笔记---上
    查看>>
    NIO蔚来 面试——IP地址你了解多少?
    查看>>
    NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
    查看>>
    NISP国家信息安全水平考试,收藏这一篇就够了
    查看>>
    NIS服务器的配置过程
    查看>>
    Nitrux 3.8 发布!性能全面提升,带来非凡体验
    查看>>
    NiuShop开源商城系统 SQL注入漏洞复现
    查看>>
    NI笔试——大数加法
    查看>>
    NLog 自定义字段 写入 oracle
    查看>>
    NLog类库使用探索——详解配置
    查看>>
    NLP 基于kashgari和BERT实现中文命名实体识别(NER)
    查看>>
    NLP 模型中的偏差和公平性检测
    查看>>
    Vue3.0 性能提升主要是通过哪几方面体现的?
    查看>>
    NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
    查看>>
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>